JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109, F04004, doi:10.1029/2004JF000150, 2004

Digital elevation model construction from structured topographic
data: The DEST algorithm

Massimiliano Favalli and M. Teresa Pareschi
Istituto Nazionale di Geofisica e Vulcanologia, Pisa, Italy

Received 12 March 2004; revised 26 June 2004; accepted 17 August 2004; published 9 November 2004.

[1] An algorithm, Determination of Earth Surface Structures (DEST), is presented to
reconstruct digital terrain models of complex landforms from topographic data, such as
contour lines and spot heights. The algorithm provides a triangular irregular network
(TIN) of the source data, based on a modified Delaunay approach. Delaunay triangulation
can introduce artificial terraces from a nonrandom distribution of input points such as a
sampled contour line. The algorithm proposed here constructs the three-dimensional
principal skeletons of these artificial flat areas, eliminating the unwanted effects of contour
lines. The algorithm can also be applied to topographic data from a variety of mixed
sources such as photogrammetric information, radar altimetry measurements, and
traditional contour lines. The sparse fine-surface structures present in the source data are
preserved, allowing accurate morphological evaluations, tectonic lineament extraction,
and volume estimation. A methodology (D-DEST) to easily derive, from a TIN computed
by DEST, the drainage path and the catchment areas is also presented. A comparison of

DEST with other methodologies is performed. It results that our approach does not
introduce sensible biased effects in slopes, aspects, drainage network, and catchment
areas. The evolution of the upper cone of Vesuvius volcano (Italy) during the last century,
as derived from historical cartography, is presented as an application of DEST. The
algorithm implemented in C can be requested at DEST pareschi@pi.ingv.it.  INDEX
TERMS: 1824 Hydrology: Geomorphology (1625); 1625 Global Change: Geomorphology and weathering
(1824, 1886); 3299 Mathematical Geophysics: General or miscellaneous; 8494 Volcanology: Instruments and
techniques; KEYWORDS: digital elevation model, morphology, Vesuvius, drainage network, watershed

Citation: Favalli, M., and M. T. Pareschi (2004), Digital elevation model construction from structured topographic data: The DEST
algorithm, J. Geophys. Res., 109, F04004, doi:10.1029/2004JF000150.

1. Introduction

[2] A model of the height of a portion Earth’s surface can
be of fundamental importance in many geophysical, geo-
logical, and geographical studies, such as morphological
analyses, the assessment of hazard and risk for terrain-
controlled phenomena, the study of lineaments and faults,
and volume estimations [Zhang and Montgomery, 1994;
Guzzetti and Reichenbach, 1994; Martz and Garbrecht,
1995; Stevens et al., 1999; Favalli et al., 1999; Kuhni and
Pfiffner, 2001; Pareschi et al., 2000a, 2002; Stevens et al.,
2003; Kirby et al., 2003]. Different techniques can be used
to produce a digital terrain model (DTM), including topo-
graphic measurements on the ground, digital aerophotog-
rammetry, laser scanners and radar, and interpolation from
existing maps (e.g., spot heights and contour lines) [Shearer,
1990; Liu et al., 1999; Meyer, 2000; Bamber et al., 2001;
Davis et al., 2001].

[3] Interpolation from point values sampled along con-
tour lines to give the final DTM structure is doubtless the
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cheapest and/or the only feasible approach in historical
cartography or topographic mapping where information on
elevation is already available. It is currently one of the most
popular techniques used to obtain DTMs for large regions.
It is crucial in the generation of a DTM to avoid bias and the
introduction of artificial features when the input points
exhibit a structured pattern [Lee, 1991; Wood and Fisher,
1993; Carrara et al., 1997; Liu and Jezek, 1999; Almansa et
al., 2002] since the reliability of the application depends on
the accuracy of the DTM [Zhang and Montgomery, 1994;
Wolock and Price, 1994; Florinsky, 1998; Pareschi et al.,
2000a; Stevens et al., 1999, 2003].

[4] This paper proposes a technique to reconstruct a DTM
based on a triangular irregular network (TIN) structure. The
most widely technique used to built a TIN from a set of
sparse points is the Delaunay algorithm [Macedonio and
Pareschi, 1991], identifying, among all the possible trian-
gulations, that one where, in every triangle, the minimum
angle is the maximum possible one. In the constrained
Delaunay approach, commonly adopted when the input
points are along sampled contour lines, no triangulation
can occur across a contour line. In both cases, artificial flat
areas are introduced where contour lines present an high
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curvature radius. Our algorithm identifies these artificially
flat areas introduced in the DTM, builds a skeleton for them,
interopolates z values along the skeleton, and retriangular-
izes the structure based on the previous input information
and on the new breaklines and elevations. Our algorithm,
named Determination of Earth Surface Structures (DEST),
provides, in general, terrain reconstruction from sparse
points, but it becomes a powerful tool when the source
points are digital values along contour lines so that their
distribution in the plane is not random. The efficacy of
DEST is discussed by comparison with other interpolation
techniques. In a specific paragraph the potentiality of DEST
to compute morphological features, in particular, ridges and
gullies, drainage network, channel slopes, and upstream
contributing areas, is discussed. In section 7 an application
of DEST is presented to reconstruct the upper cone of the
Vesuvius volcano (southern Italy) during the last century,
when only historical maps and contour lines are available to
support quantitatively the morphological evolution and
volume changes of that volcano.

2. Delaunay and the Constrained Delaunay
Triangulation

[5] A number of different data structures have been used
to store and display topographic structures, but the most
commonly used is the elevation matrix structure based on a
square grid (digital elevation model (DEM)) and the trian-
gular irregular network (TIN) structure.

[6] In a TIN structure, input planar points (each one
characterized by two planar coordinates x,, y,) are
connected in a network of triangles. In space the terrain
surface is approximated by a set of triangular facets where
the altimetry information (z, value) of each node (x,, y,) is
used to determine the local triangular facet orientation.
Compared with a grid structure, the advantages of a TIN
structure are as follows [Wood and Fisher, 1993; Mitasova
et al., 1996; Carrara et al., 1997; Meyer, 2000]: (1) the
reduction of redundant data in areas with uniform relief or,
vice versa, the maintenance of high detail where dictated by
relief and gradient; (2) a simple derivation of morphological
parameters such as slope angle and maximum gradient;
(3) no anisotropies associated, as in the case of a DEM, with
the vertical, horizontal, and diagonal directions of the mesh;
(4) in the altimetric model, incorporation of auxiliary
information such as gullies, ridges and faults.

[7] The best known and most widely used triangulation
technique is that based on the Delaunay algorithm [Watson,
1981; Preparata and Shamos, 1985; McCullagh, 1988;
Macedonio and Pareschi, 1991; Rebay, 1993; Mavriplis,
1995; Stevens et al., 1999], where the input points are
connected to form a set of triangles, the minimum angle
of which is the maximum one in all the triangulations. This
algorithm, which can be extended to 3 (or n) dimensions
using tetrahedral meshes to deal with three-dimensional
(3-D) geographical object reconstruction such as under-
ground profiles and aquifers [Golias and Dutton, 1997;
Li, 2003], does, however, introduce bias effects if the input
points are not randomly distributed.

[8] As indicated by the great number of interpolation
techniques available in the literature to produce TINs or
DEMs, the interpolation of sparse nonrandom elevation
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Figure 1. Voronoi regions (thick lines) and associated
Delaunay triangulation for nine generating points. Tile
edges (bold) lie on the axes of the sides of the Delaunay
triangles. Points within a tile are closer to the tile’s
generating point than to any other generating point. The
dotted line is the axis of segment P;P; and divides the plane
into two region V; and V.

points (i.e., elevation points from digitized map contours)
to coherent and structurally significant morphological ter-
rain models remains a central problem. It is often solved
roughly or heuristically [Watson, 1992; Li, 1994; Mitas and
Mitasova, 1999; Albani and Klinkenberg, 2003].

[¢9] The first systematic approach to the problem of
connecting a set of points to reconstruct 2-D and 3-D
meshes was that of Dirichlet and dates back to 1850. He
proposed subdividing a given domain into a set of convex
polygons [Preparata and Shamos, 1985]. According to
Figure 1, given two points P; and P; in a plane, the axis
of the segment P;P; divides the plane into two regions, V;
and V. Region V; contains all, and only, the points closer to
P; than to P;. If we have more points, we can easily extend
this concept by saying that V; is the region assigned to P; so
that each point belonging to V; is closer to P; than to any
other point. The subdivision of a space into regions defined
as the nearest neighborhoods to a set of distinct points is
called Dirichlet tessellation.

[10] In the plane, this process applied to a closed domain
generates a set of distinct convex polygons called a Voronoi
diagram (Figure 1). If all the pairs of points (P;, P;), sharing
a side of a Voronoi polygon are connected, we obtain a
triangulation of the convex region containing these points,
known as the Delaunay triangulation (DT).

[11] The Delaunay triangulation shows some interesting
features [Watson, 1981; Preparata and Shamos, 1985]:
(1) given a triangle (P;, P;, P;) belonging to a Delaunay
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Figure 2. Three-dimensional (3-D) perspective views of a mountain region, reconstructed by (a) a CDT
and by (b) the DEST algorithm. In areas subtended by contour lines with an high curvature a DT or a
CDT can introduce false morphologies (flat terraces, Figure 2a). The DEST algorithm eliminates the flat
triangles (Figure 2b) by the computation of ridges and gullies.

triangulation of a set of generating input points, no other
point of the generating set is internal to the circle defined by
P;, P, Py; (2) in the Delaunay triangulation the minimum
angle of all the triangles is the maximum outside of all the
triangulations. Feature 1 guarantees that the “nearest”
points are joined together, while feature 2 means that the
triangles are as “equilateral” as possible so that “distal”
information is not linked together.

[12] The Delaunay triangulation can be applied to con-
struct a TIN from a set of points coming from the vectori-
zation of contour lines and isolated points of a topographic
map. In space the triangles are those defined by their three
points (z values from spot heights and contour lines); their
projection onto the horizontal plane x-y is the Delaunay set.
It is always possible to deduce a DEM from a TIN. At the
generic grid node P of planar coordinates (x,, y,) the
corresponding z, value can be deduced from the plane
defined by the three vertices of the triangle enclosing P.

[13] When a TIN is generated by a DT of the digitized
points from topographic contour lines to represent the
surface of the landscape, in some cases, artifacts may
appear: (1) a number of flat triangles could be generated
where nodes of equal height (belonging to the same contour

line) are joined, forming horizontal artificial terraces along
the contour [Stevens et al., 1999, 2003]. The flat regions are
particularly liable to occur where the curvature of the
contour lines is high (Figures 2a and 3b); (2) the Delaunay
approach can join points belonging to different noncontig-
uous contour lines, crossing the intermediate contour line;
(3) a DT does not force given segments (faults or other
morphological features, e.g., ridges) to become edges of
triangles (breaklines).

[14] The concept of constrained Delaunay triangulation
(CDT) is introduced in order to prevent some false features
from appearing (the last two requirements just listed above).
A CDT ofaset of points and segments is similar in all respects
to a Delaunay triangulation, except that the input segments
are forced to be triangle edges. Obviously, a CDT may not
always satisfy the criteria for a Delaunay triangulation.

3. Removal of False Flat Patches in the
Constrained Delaunay Triangulation (CDT)
Using DEST

[15] As already mentioned, a DT or a CDT can introduce
local, false flat morphological features related to triangles,

B
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Figure 3.

(a) Dots represent the digitalized points in the x,y plane along sampled contour lines (dashed).

(b) Flat areas reconstructed by a DT or a CDT outlined as gray triangles. All these triangles have vertices
with the same z value since belonging to the same contour line.
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Figure 4.

(a) Inferred breakline (bold) reconstructed as the medial axis of a contour line (thinner gray

line). (b) A CDT or a DT introduces flat artificial terraces in areas subtended by contour lines with a high
curvature. Triangle sides are shown as thin lines. The bold central line is the reconstructed skeleton
draped on the morphology. (c) If the height of the skeletal points is interpolated between adjacent contour

lines, a 3-D reconstruction is provided.

whose vertices are on the same contour line, occurring, in
particular, in areas subtended by contour lines with a high
curvature (Figures 3b and 4b). These false horizontal
terraces alter all the local morphological features: height,
slopes, drainage network, volumes, and maximum slope
paths.

[16] In order to avoid the problem, we propose an
algorithm, DEST. In the originally flat regions, DEST
computes inferred breaklines (IB) and uses them to recon-
struct a new local triangulation. These new lines, with
heights interpolated between adjacent contour lines, help
in the local reconstruction of the “true” morphology.
Inferred breaklines are assumed locally to be a gully or a
ridge (Figures 4a and 4c).

[17] From a geometrical point of view the IBs are
computed as the medial line (skeleton), equidistant from
the boundary of the region constituted by the local network
of flat triangles (Figures 4a—4c). The medial axis of a
simple plane polygon has various names, including sym-
metric axis or skeleton (Sk). The term skeleton” is
preferred to indicate the medial axis of a convex region.
One of the most picturesque ways of identifying the medial
axis is the grassfire transform: imagine igniting all the
boundary points of the polygon. If the flame burns inward
at a uniform rate, then the quench points where the flame
meets and extinguishes itself define the medial axis [Blum,
1967]. A mathematically rigorous definition of the skeleton
of a plane figure is the following: let R be a plane figure, B
its boundary, and P a point in R. The nearest neighbor of P
on B is a point M such that there is no other point in B
whose distance from P is less than the distance PM. If P has
more than one nearest neighbor on B, then P is said to be a
skeletal point of R. The union of all skeletal points is called
the skeleton or medial axis of R [Pavlidis, 1982].

[18] It can be demonstrated that the skeleton of a convex
region (in our case the flat areas), whose boundary is
constituted by straight segments (the corresponding sam-
pled contour line), is a succession of straight segments and
arc of parabolas (see Appendix A). Further, when a sampled
contour line is considered, it is necessary to distinguish
between the skeleton and the principal skeleton (PS), where
artificial noise related to contour line sampling is avoided.
Appendix A reports some interesting properties of the
medial axes and some further details about the methodology
adopted by DEST to determine the skeleton in the special
case of sampled contour lines.

[19] About PS, in our case, there is a simple, rapid
method for identifying it (see Figure 5). In the flat region
created by a DT, even in the most complex cases, only three

kinds of triangles can occur, according to the number of
sides belonging to the contour line: (1) triangles (dark gray
in Figure 5) whose vertices are all consecutive on the same
contour line (two sides of the triangle are also two segments
of the contour line); (2) triangles (white in Figure 5) that
have only two vertices consecutive on the same contour line
(one side of the triangle is also a segment of the contour
line); and (3) triangles having no side on the contour line
(light gray triangles in Figure 5). It is evident from Figure 5
that (1) in a “light gray” triangle (LGT) an intersection of
three branches of the PS occurs; it is also evident that (2)
“white” triangles (WHT) are simply crossed by the IB; (3)
the common vertex O, of two sides (contiguous along the
contour line) of a “dark gray” triangle (DGT) is a depar-
ture-arrival point (DAP). A DAP (of the IB) is a point of
local maximum curvature of the contour line, where a
branch of the PS departs. The computation of the principal
skeleton starts from the DAP of the DGTs; the intersections
of the medial axes with the internal sides of triangles are
evaluated (i.e., point like Sk, of Figure 5) until (1) a LGT
is encountered where the local branch of the PS connects
with other branches of the PS (Figure 5) or (2) a not
horizontal triangle is encountered (i.e., the green triangle
FEQ; of Figure 6, where points £ and F belong to a contour
line, while point Q3 belongs to another one). The numerical
approximation of the PS is reconstructed by connecting with
straight segments all these intersections. In Appendix B a
fast method to reduce computational time for PS recon-
struction is described in detail.

[20] Points Sk; of the skeleton are heighted using the
values of the two contour lines bounding the flat region. As

Figure 5. The end points (Q,, Op, O.) of the principal
skeleton (dashed line) are the vertices of triangles (DGT)
with two sides on the contour line. Branching points of the
skeleton occur in triangles (LGT) with no side on the
contour line.

4 of 17



F04004

Figure 6. The flat region EQ,F, built up by triangles with
vertices at the same quote, is closed by the (green) triangle
FEQ;, having two vertices at the same height (that of the
contour line EQ,F) and the third vertex Qs at the height of
the contiguous contour line. The skeleton of the region
EQ,F is the polyline 0,0, O, being a DAP. The skeletal
points Sk are assigned height linearly along the skeleton
using the values of the two contour lines bounding the flat
region (the height of the points O, and 0s).

shown in Figure 6, the flat region EQ,F, built by some
triangles with vertices at the same height, is bordered by a
triangle FEQs, having two vertices at the same height
(E and F) and the third vertex Qs at the height of a
contiguous contour line. The skeleton of the region EQ F
is the polyline Q,0,, where O, is a DAP. The skeletal
points, Sk;, of the polyline 0,0,0; are assigned height
values according to the formula

_ XsiZos + (L —Xsi )70,
ZSk, — L )

(1)

where xg is the coordinate along the polyline 0,0-03 with
origin in point Q,; L is the total length of the polyline
0.0->05; and zgy, zg , zp, are the heights of points Sky, O,
and (s, respectively.

[21] If the contour line is a closed line with no other
internal features (contour lines or isolated spot heights),
the internal IB is heighted by assigning to the skeletal
point, at middle distance along the IB, the height value
equal to zp + Az/2, where Az is a given maximum interval
(for example, the difference in elevation between the two
contiguous contour lines). The sign depends if it is a hill
or a hollow.

[22] In conclusion, we propose the algorithm DEST.
Given a set of isolated spot heights and segments discretiz-
ing contour lines, a CDT is performed. The principal
skeletons of the flat regions created by the CDT are
computed and assigned heights. A new CDT is then
performed, considering all the isolated spot heights, the
segments approximating the contour lines, and the segments
of the computed (3-D) principal skeleton. In such a way the
gullies and the ridges computed by DEST become sides of
the triangles of the TIN. The new 3-D network of triangles
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in space does not contain the artifacts typical of a traditional
DT of contour line curves.

4. Comparison of DEST With Other Algorithms

[23] The DEST algorithm has been compared with other
techniques, selecting for this purpose four algorithms most
commonly used of the many available in the literature. They
belong to the three main groups proposed by Watson
[1992]: distance-based methods (inverse-distance-based
gradients), triangle-based methods, and neighborhood meth-
ods. Many of them are also implemented in commercial
software.

4.1. Method A

[24] This approach was suggested by Eastman and cow-
orkers [Eastman et al., 1993; Eastman, 1995]. For each
mesh point the intersections of the principal axes and their
bisectors with nearby contour lines are evaluated and are
used to compute the interpolated heights and slopes. The
height associated with the maximum slope is then chosen at
the mesh point height.

4.2. Method B

[25] This technique is based on the approach by Borger-
fors [Gorte and Koolhoven, 1990]. The minimum distances
of each contour line from the interpolation point are
evaluated. A linear interpolation is then performed using
the two distance values and the two nearest contour values.

4.3. Method C

[26] This approach is based on a constrained Delaunay
triangulation of the contour lines. This method is imple-
mented in the ERSI products.

4.4. Method D

[27] In this approach the CDT of the contour lines is
evaluated. In the flat areas computed by the CDT, some
inferred breaklines are evaluated as the lines joining the
medial points of the internal sides of the flat triangles. This
IB is linearly heighted according to the contiguous contour
line values, along its path. This approach is implemented in
the MGE INTERGRAPH software.

4.5. Method DEST: The Algorithm
Proposed in This Paper

[28] The CDT of the contour lines is evaluated. In the flat
areas computed by the CDT, inferred breaklines are evalu-
ated as the principal skeleton of the flat terraces.

[29] According to Watson’s [1992] classification, algo-
rithms A and B belong to the distance- and neighborhood-
based methods, whereas methods C, D, and DEST are
triangle-based methods.

[30] Other methods produce effects that are easily quan-
tifiable. Since points are structured along contour lines, a
DEM evaluated by a Kriging technique, considering an area
of influence around the interpolation point, presents contour
line ghost effects [Armienti and Pareschi, 1987; Barberi et
al., 1992]. DEM generation based on contour line dilatation
is influenced by the vector-to-pixel approximation used in
the dilatation procedure [7aud et al., 1999]. Since the input
points for the interpolation are chosen along predefined
directions, distance-based methods produce DEMs with
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Figure 7. Number of occurrences versus the differences between grid z value and the lower contour line
height (the pair of contiguous contour lines enclosing the grid point is considered). The test area is 10 x
10 km wide, with a contour line interval of 25 m. (a) Methods A and C; (b) methods B, D, TOPOGRID,
and DEST. Methods A, C, and TOPOGRID show marked peaks in correspondence of the two boundary
values 0 m and 25 m. Near these two boundary values, TOPOGRID shows sink values too. Methods B
and TOPOGRID do not satisfy criterion 2, i.e., the DEM elevations do not range inside the isohypse
equidistance. For less then 1% of DEM points, method DEST retains small overestimations/

underestimations related to contour levels.

artificial structures along these directions. Other sophisti-
cated methods are not considered here since they are unable
to fully benefit from the organization of the input points as
contour lines. In the following section a specific comparison
is done between DEST and the TOPOGRID algorithm
[Hutchinson, 1989], one of the most diffuse worldwide
approaches.

[31] Methods A, B, C, and D, TOPOGRID, and the
DEST method have been tested on a 10 x 10 km site in
the Campania region of southern Italy. The contour lines of
a portion of this square site are shown in Figure 12. The
DEMs used for comparison have a 10 m resolution step.
The input vector data are isohypses derived from a 1:25,000
map, UTM EDS50.

[32] Different techniques can be adopted to evaluate the
performance of interpolation algorithms [Carrara et al.,
1997; Hutchinson, 1989; Wood and Fisher, 1993; Liu and
Jezek, 1999]. The following criteria have been used in the
validation of methods A to D and DEST: (1) DEM points
falling along a contour line must have the same elevation as
the isohypse; (2) the DEM elevations must fall within the
isohypse equidistance range between two contiguous con-
tour lines at different quotes; (3) the vertical distance of
DEM elevation from the nearest lower contour line has a
rectangular distribution, reflecting no tendency of the inter-
polated data to cluster preferentially around nearby contour
quotes; and (4) no bias must be present in the distribution of
aspects.

[33] All the methods A—D and DEST satisfy criterion 1.
Criteria 2 and 3 have been verified by the height distribu-
tions between all the pairs of contiguous contour lines,
referred to the lower contour line height. The contour line
interval of the test site is 25 m so that all the differences are
expected to fall in the range 0—25 m. A rectangular
distribution (elevations that are uniformly distributed)
occurs if no bias effects are present in the DEM

[Reichenbach et al., 1993]. In all the DEMs, except for
those created using methods D and DEST, the distributions
of relative elevation differences present two major bias
peaks (0 m and 25 m) (Figures 7a and 7b): that is, all these
algorithms reconstruct false flat morphologies at contour
heights. The phenomenon increases as the DEM resolution
increases [Wood and Fisher, 1993].

[34] Method D can overestimate (underestimate) heights
in convex (concave) regions, depending on the point distri-
bution along contour lines. In fact, the inferred breaklines of
method D connect the medial points of the internal triangle
sides. These lines display abrupt changes in direction and,
near the lower (higher) contour line, the first medial point
has a higher (lower) value than expected (because of its
closeness to the isohypse). In conclusion, the inferred
breaklines of method D, because they are heighted along
their path, introduce anomalous hills or sinks.

[35] The distribution of aspects is evaluated for all the
methods (Figure 8). Methods A, B, and C produce hori-
zontally flat regions, for which an aspect angle is not
defined. In the present test case the percentage of these
areas is 3.7%, 2.4%, and 18.6% for methods A, B, and C,
respectively. Methods A, B, and D have anomalous peaks in
the aspect distribution in correspondence to the “natural”
angles of a square mesh: +q;, 90 + o, 180 + o, and 270 +
«;, with o; = arctan (n/m), n and m € N, with n < m. The
most pronounced peaks occur at 0° + n 45°, n € N. In
contrast, the DEST algorithm shows no such artefacts.

5. Comparison of DEST With TOPOGRID

[36] One of the most common algorithms used to evaluate
DEMs from contour lines is TOPOGRID [Hutchinson,
1989]. It is based on an interpolation approach that derives
quotes on a regular grid by minimizing a discretized
invariant roughness penalty defined in terms of first- and
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Figure 8. Angular distributions of the aspects for each method for the test site (see Figure 12).
Horizontal (flat) areas introduced by methods A, B, and C are not represented in the diagrams. Methods
A, B, and TOPOGRID show anomalous peaks in the aspect distribution connected with the “natural”
angles of a square mesh (0° + n 45°, n € N). Method D shows anomalous peaks mainly at 0°, 90°, 180°,

and 270°.

second-order partial derivatives of the fitted function. The
iteration technique utilizes a simple nested grid strategy that
calculates grids at successive finer resolutions, starting from
an initial coarse grid, and successively halving the grid
spacing until the final user-specified grid resolution is
obtained. The interpolation technique introduces spurious
pits and sinks. To avoid these spurious effects, Hutchinson
[1989] introduces a drainage enforcement algorithm that
removes, within tolerances specified by the user, the pits
and sinks along the drainage paths.

b)

[37] TOPOGRID has been tested on a 10 x 10 km site,
located in the Campania region, southern Italy. Grid step is
10 m. Part of the text area is shown in Figure 12. As
depicted in Figure 7b, the DEM elevation between two
contiguous contour lines at different quotes do not fall
within the isohypse equidistance range (some values are,
in fact, lower than 0 m and greater than 25 m). The vertical
distance of DEM elevations from the nearest lower contour
line also show anomalous values at and near zero (i.c.,
peaks and sinks near contour line z values) (Figure 7b).

Slope (degrees)

<23
23-25
25-26

26-27
27-28

38-30
=30

d)

Figure 9. (a) 3-D view of equispaced contour lines of an ideal cone, with constant slopes (26.5°). If rq is
the radius of the cone base, the contour line interval is 0.013 r(, and the cone height is 7(/2. (b) Slopes of
the TIN-based cone reconstructed by DEST. The uniform gray level values indicate a nearly constant
slope according to the slope color table in Figure 9d. (c) Slopes of the cone reconstructed by
TOPOGRID. Ghost effects (radial noise), related to contour lines, are present, indicating a stepped cone;
further, more pronounced noise occurs along preferred directions (0° + n 45°, n € N) related to the grid-

based interpolation of TOPOGRID.
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Figure 10. (a) An ideal cone with constant slopes (26.5°) is sketched by contour lines at varying
intervals. If ry is the radius of the cone, the cone height is ry/2. In region sl the contour line interval is
0.005 ry (internal region) and 0.026 r, (external region), respectively; in region s2 the contour line
interval is 0.013 ry; in region s3 the contour line interval is 0.0085 r(, and in region s4 the contour line
interval is 0.006 ry. (b) Aspects of the cone reconstructed by DEST (similar to the ideal ones). Different
aspects are grouped in 10°-sized intervals, represented with two alternate colors. (¢c) Aspects of the cone
reconstructed by TOPOGRID. Noise is present, with a pattern dependent on the contour line interval. (d)
Slopes of the cone reconstructed by DEST. The almost uniform gray level values indicate a nearly
constant slope. (e) Slopes of the cone reconstructed by TOPOGRID. Noise effects related to contour lines
are present. In both Figures 10d and 10e the slope color table is that of Figure 9d. (f) Differences between
the ideal cone directrix and the surface reconstructed by TOPOGRID and DEST along profiles 1 and 2.
The differences present a discrepancy with a frequency equal to the contour line intervals in the case of

TOPOGRID.

[38] The distribution of aspect also shows anomalous
values, at 0° + n 45°, n € N, related to the square mesh
structure of the roughness penalty minimization performed
by TOPOGRID (Figure 8). Additionally, the angular distri-
bution of aspects in TOPOGRID is smoothed: the drainage
enforcement algorithm of TOPOGRID tends to remove
not only spurious sinks but also, in part, natural features
with characteristic dimensions below the tolerances of
TOPOGRID.

[39] The artefacts related to the ghost effects of contour
lines and anomalous preferred aspects can easily be detected

on an analytical surface that does not present the rough-
ness (masking) effects of a natural landscape. A conical
surface was chosen for the test (Figure 9), where the
source consists of equispaced contour lines with a constant
slope of 26.5°. Since here no drainage paths are present,
no spurious sinks are introduced by TOPOGRID and it is
possible to test the efficiency of the minimization algo-
rithm of TOPOGRID. The noise introduced by the mini-
mization of the roughness penalty, clearly visible in the
slope image (Figure 9c), has a frequency that is related to
the contour line interval.
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(a) Perspective view and projection in the horizontal plane of contour lines along a

helicoidal belt with three parallel ridges. (b) Reconstruction of the belt by the DEST algorithm.
(c) Reconstruction by TOPOGRID. Tolerances used are the recommended ones, while the number of
iteration is 30. (d) Breaklines computed by DEST (red lines) coinciding with the real ridges.
(e) Correct slopes reconstructed by DEST (red means slopes greater than 50°). (f) Slopes of the grid
reconstructed by TOPOGRID showing pronounced artifacts, with a density increasing toward the

internal edge of the elicoidal belt.

[40] In general, the contour lines show variations in their
average density, e.g., in areas passing from steep slopes to
flattish zones, where there is a slope break or where
contour lines coming from different sources may be
at different resolution. The behavior of DEST and
TOPOGRID has been investigated in these regions. A
cone with a constant slope (26.5°) is reconstructed by
contour lines having a density that varies with the sector
(Figure 10). Within a sector, there is a change in contour
line density, depending on contour line radius. There are
no particular effects either in TOPOGRID and DEST
reconstruction at the boundaries between regions with
different contour line densities. However, as in the
example shown in Figure 9, slopes reconstructed by
TOPOGRID generally show noise, whose frequency
depends on the contour line spacing (Figures 10e and
10f), with an increase along the square mesh preferred
directions mentioned above (0° + n 45°, n € N).

[41] Furthermore, noise introduced by TOPOGRID
could have a no-zero mean, showing a systematic trend
as shown in Figure 10f (positive values of the differ-
ences, i.e., overestimated heights). This overestimation
occurs also for the Vesuvius volcano cone (average value
of the discrepancy = 0.3 m for the Vesuvian area of
Figure 16 (inside the line). These no-zero mean discrep-

ancies could involve errors in volumes estimated by
TOPOGRID.

[42] Also, aspect exhibits a noise pattern that depends on
contour line density (Figure 10c). No artefacts are present in
the cone reconstructed with DEST (Figures 10b, 10d, and
101), except for discretization effects at the top of the cone.

[43] A crucial point in TOPOGRID is the removal of pits
and sinks introduced by the minimization of the invariant
roughness penalty. Since removal is achieved along ridges
and drainage, the “reliability”” of the interpolated values
strongly depends on the ability of the drainage enforcement
algorithm of TOPOGRID to evaluate these morphological
features. Removal can sometimes fail, for two main reasons:
(1) TOPOGRID is not always able to detect the correct
drainage network and (2) the tolerances introduced by
TOPOGRID for further removal of sinks and pits are the
same throughout the domain so that they cannot adjust to
changes in contour line density. Figure 11 shows an ideal
helicoidal belt. Given the internal radius ry, the external
radius is 3.33 ry, the difference between the minimum and
maximum contour line height is 6.5 r(, and the contour line
interval is 0.17 ry. Along the belt are three ridges running
parallel to each other. Near the internal side of the belt,
the distance between points along the same contour line
(located where the contour lines change direction) is similar
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Figure 12. Contour lines (red) of a natural landscape. The
contour line interval is 25 m. Green lines are the drainage
computed by TOPOGRID, and blue lines are the drainage
(breaklines-based) computed by D-DEST. As can be simply
verified in points 1, 2, 3, and 4, TOPOGRID is not always
able to correctly identify the drainage paths, and “jumps” of
the drainage path can occur from one gully to the next
nearest gully, across weak ridges.

to the distance between contiguous contour lines. Along the
internal side of the belt, TOPOGRID is unable to adequately
reconstruct ridges because the similar distances between
points of the same contour line and points of nearby lines.
Increasing the value of the tolerances and the number of
iterations of TOPOGRID by 300%, with respect to the
default recommended values, does not bring any improve-
ment. In the TOPOGRID reconstruction, similar effects
occur if gullies (instead of ridges) are introduced in the
contour lines of the helicoidal belt of Figure 11. On the
contrary, DEST does not introduce any artefact. Figure 11e
shows that our algorithm is insensitive to the digital
sampling interval along the contour lines (from the internal
edge of the belt to the external one, in the contour lines of
Figure 11a, this interval increases; points are, in fact, located
at the change of direction of contour lines).

[44] The contour lines of a natural landscape are
shown in Figure 12. Again, no sinks are removed where
TOPOGRID does not clearly identify drainage. As shown
in Figure 12, in the TOPOGRID surface reconstruction,
jumps of the drainage path can occur from one gully to the

F04004

next nearest gully, across weak ridges. As a result, there is
no local elimination of artificial sinks and erroneous
drainage identification and inaccurate estimates of the
catchment areas.

6. Drainage Path and Catchment Areas
From DEST

[45] Topography plays an important role in the distribu-
tion and flux of water and energy within natural landscapes.
Drainage and related features such as ridges, valley bot-
toms, channel networks, and surface drainage patterns can
be simply derived by a raster DEM, with grid elevations at a
regular mesh. The D-8 method [Fairfield and Leymarie,
1991] is one of the most diffuse ones. This approach
identifies the steepest downslope flow path between each
cell of a raster DEM and its eight neighbors (hence the name
D-8 method) and defines this path as the only flow path
leaving the raster cell. The drainage network is identified by
selecting a threshold catchment area, at the bottom of which
a source channel originates; all cells with a catchment area
greater than this threshold catchment area are classified as
part of the drainage network. This drainage network iden-
tification approach is simple and directly generates
connected networks [Martz and Garbrecht, 1995]. Channel
and drainage area capturing occurs when the DEM resolu-
tion can no longer resolve the separation between channels
or drainage boundaries. In such situations the number of
channels, the size of direct drainage areas, and the channel
network pattern depend on grid resolution and may depart
considerably from the real ones [Martz and Garbrecht,
1995]. The use of the D-8 method for catchment area
and drainage network analysis has been further criticized
by different authors on the grounds [Quinn et al., 1991;
Costa-Cabral and Burges, 1994]. For example, anisotropy
introduced by the use of regular grids fails to represent
adequately divergent flow over convex slopes and can lead
to a bias in flow path orientation [O Callaghan and Mark,
1984; Fairfield and Leymarie, 1991]. Many techniques
have been proposed to solve this problem, among them
the use of a multiple flow instead of the single flow
direction away from a DEM cell [Quinn et al., 1991].
However, although the multiple flow direction algorithm
seems to give superior results in the headwater region of a
source channel (overland), a single flow direction algorithm
is superior in zones of convergent flow and along well-
defined valleys [Freeman, 1991; Quinn et al., 1991].

[46] All the above described problems are related to the
grid structure, which, for its regular mesh organization, does
not adjust to variations in terrain feature density (steep
slopes, gullies, ridges, flat areas, etc.). On the other hand,
TINs allow for variable spatial resolution, and they generally
consist of a simple organization of the input data (triangles)
by adding topological connection. With the introduction of
ridges and valleys the DEST triangulation guarantees that
gullies and ridges (added breaklines) be sides of the trian-
gular network discritizing the terrain surface.

[47] We suggest a simple but efficacious technique to
evaluate the drainage path in a TIN-based digital elevation
model, named D(rain)-DEST. At each triangle node (instead
of at the grid node of the D-8 method) the D-DEST
algorithm we suggest identifies the steepest downslope flow
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Figure 13. Drainage network and catchments areas computed by D-DEST: the thickness of the drainage
paths depends on the catchment area.

Figure 14. Basins of the northern flanks of Vesuvius volcano (southern Italy), computed by D-DEST.
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Figure 15. Cone morphology of Vesuvius in (a) 1900, (b) 1906, (c) 1920, and (d) 1988, as
reconstructed by the DEST algorithm. The box in Figure 15a is the area covered by Figure 16. The
coordinates of the bottom left corner are (UTMEDS0) longitude 445634E; latitude 4515646 N.

path among all the triangle sides departing from that node
and defines this path as the only flow path leaving the node.
The drainage network is identified by selecting a threshold
catchment area, at the bottom of which a source channel
originates; all triangle sides with a catchment area greater
than this threshold catchment area are classified as part of
the drainage network. The catchment area of the single
triangle is assigned to one or more nodes (vertexes),
depending on the local triangle gradient. This approach is
simple and directly generates connected networks, permit-
ting the exact delineation of catchment areas and drainage
on very large areas almost in very short times (<1 s on a PC
for the tile 10 x 10 km of Figure 11), keeping everywhere
the resolution of the input data. The fastness of the tech-
nique (up-down to compute the drainage catchments, and
down-up to identify a basin) depends on the tree structure of
the computed data. It is important to remark that all the
gullies identified by the DEST algorithm belong to the
drainage network of D-DEST. An example of the drainage
network computed by D-DEST is reported in Figure 12
(only the drainage paths with a catchment area greater than
a given threshold (in Figure 12, 120,000 m?) are reported).
In Figure 13 an example of the drainage network and of
some basins (catchment areas greater than a fixed threshold,
10000 m? in the figure) computed by D-DEST is reported.
The considered area is a portion of the above-mentioned
10 x 10 km site in the Campania region. The same approach

has been applied to evaluate the basins of a central cone
morphology too, like the Vesuvius volcano. The identifica-
tion of these basins allows, for example, a better zonation of
hazard related to debris flow developing on Vesuvius slopes
in case of eruption. In the northern sector of Vesuvius cone
(Figure 14), differences in basin areas identified by D-DEST
and TOPOGRID (10 m grid) range up to 10%.

7. An Application: The Reconstruction of
Vesuvius Volcano

[48] As a typical application of the DEST algorithm, we
reconstructed the evolution of the Vesuvius volcanic cone
(Campania region, southern Italy) in the twentieth century,
using historical maps. The input topographic data are
contour lines and spot heights, used by DEST to create
the TIN of the area.

[49] The conical shape of Vesuvius volcano is a result of
the accumulation of products from the central vent during
explosive and effusive eruptions. In the last 20 centuries
[Cioni et al., 1999] the Vesuvian cone has evolved within
the caldera of an older volcano, Mt. Somma, which is
clearly visible in the northern sector (Mt. Somma ridge,
Figures 15 and 16). During the last century the main
eruptions occurred in 1906 and 1944 [Arrighi et al.,
2001]. The 1906 eruption started in May 1905 with slow
lava effusions and intermittent strombolian activity. In April
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Figure 16. Differences in elevation (in meters) due to
eruptive deposition superimposed to the previous morphol-
ogy: (a) differences 1906—1900 and (b) 1988—1920. The
line defines the area within which volume differences
computations were made.

1906 the eruption reached a climax with lava fountains and
earthquakes. The top of Vesuvius was truncated, and a vast
crater developed; an eruptive column of ash and gases
reached a height of 13 km. The eruption ended at the end
of April. After a short period of quiescence, Vesuvius was
again characterized by permanent activity from 1913, with
the quiet effusion of lava and minor explosions from a small
conelet slowly filling the crater left by the 1906 eruption. In
1929 a major lava flow overflowed from the Somma caldera
rim and reached the village of Terzigno, on the eastern
slopes of the volcano, followed by lava fountains and
seismic tremors. By 1944, the 1906 crater had almost filled.
The 1944 eruption was characterized by lava flows (invad-
ing the villages of Massa and S. Sebastiano), lava fountains,
a sustained ash plume, small pyroclastic flows, and lahars.
The 1944 event was the last one, and since then, the volcano
has been quiescent, with no major signs of activity [Rosi et
al., 1987; Arrighi et al., 2001].

[s0] The upper cone variations of Vesuvius have been
reconstructed by the DEST algorithm applied to topographic
data from the following historical maps: (1) the Istituto
Geografico Militare Italiano (IGM) survey of 1900, with
corrections in 1904; (2) the IGM survey of 1906; (3) the
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IGM survey of 1920; and (4) the survey of 1988, integrated
with that of 2001 [Pareschi et al., 2000a, 2000b, 2002].

[51] The altimetric errors on the 1900/06/20 and 1988
maps are £1.5 m (90% of cases) and £0.6 m (90% of cases),
respectively. Figures 15a—15d show the upper cone mor-
phology in 1900, 1906, 1920, and 1988/2000, as recon-
structed by the DEST algorithm. The morphological changes
have been updated only inside the dark line, in the range
750—800 m above sea level (asl). Outside the line, the
topography is the last available one. Figures 16a and 16b
illustrate the differences in elevation caused by an eruption
superimposed on the preceding morphology (differences
1900—-1906 and 1920—1988). During the 1906 eruption the
preceding cone was truncated and eroded, taking on the shape
of a funnel. From the reconstructed TINs the maximum and
minimum crater rim heights pass from 1335 m and 1285 m asl
to 1220 m and 1120 m, respectively, and the bottom of
the crater from 1240 m to 985 m. The volume removed
from the crater during the 1906 erugtion is estimated to be
67 million m* (compare 84 million m® heuristically evaluated
by Nazzaro [1997]). On the slopes of the upper cone (inside
the closed line of Figures 16a and 16b), the volume increase in
the period 1900—1906 is 105 million m®, mostly from lava
flows, tephra fallout, and ballistics.

[52] The 1944 eruption changed the morphology of the
upper cone again. The 1906 vent, filled in the period 1906—
1944 by intermittent activity, is modified again during the
1944 event. The volume increase on the upper flanks is 175
million m>, again as a result of lava flows, tephra fallout,
and ballistics.

8. Conclusions

[53] An improved method (DEST) is described for gen-
erating TINs from contour lines and spot heights. It is well
known that a Delaunay triangulation or a constrained
Delaunay triangulation introduces false morphological fea-
tures (flattened terraces), especially in areas where the
contour lines display high curvature. Many attempts have
been made to avoid the ghost effects related to the nonran-
dom distribution of input contour line points. The DEST
method reconstructs the principal skeleton of morphologi-
cally anomalous flattish areas introduced by a CDT. From
these, new inferred breaklines are used as additional seg-
ments in the modified CDT. The method could be applied to
historical maps, where the elevation information is confined
to contour lines only, and in general to existing topographies
acquired through isohypses.

[54] The main advantages presented by DEST compared
with other algorithms from literature, i.e., TOPOGRID, are
as follows.

[s5] 1. There are no constraints on the digital sampling
intervals along contour lines (see Figure 1le where, from
the internal edge of the belt to the external one, this interval
increases without problems).

[s6] 2. There is a simple format of the input data: just
isolated spot heights and contour lines (as polylines).

[571 3. No arbitrary (i.e., chosen by a user) tolerances
have to be specified, as, for example, in TOPOGRID.

[s8] 4. There are facilities for processing input data at
different resolutions and from different sources, without
bias effects. For example, Figure 17 shows the TIN recon-
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Figure 17. TIN, computed by DEST, of the Aeolian
Islands (from bottom to top: Vulcano, Lipari, Salina
Islands), southern Tyrrhenian Sea, north of Sicily.

structed by DEST for the Aeolian Islands. For land, input
data are spot heights and contour lines from 1:10,000 maps;
the La Fossa Cone of Vulcano Island (bottom left in
Figure 17) comes from a digital photogrammetric grid,
1 m resolution [Achilli et al., 1998]; for the sea bottom,
data are from monobeam and multibeam echosounders
along radial paths around the islands [Bisson et al., 2003].

[s9] 5. There are no bias effects in slopes and aspects.
This is an important characteristic for geomorphological
applications but also in other fields. In SAR data processing,
for example, an “external” DEM supports the integration of
height information in the areas affected by shadowing,
layover, or lack of coherence in SAR data. A digital terrain
model without bias effects in slopes and aspects guarantees
the generation of homogeneous and seamless final data.

[60] 6. DEST has the capability to compute ridges and
gullies and, as a consequence, drainage paths and catchment
areas. Since these morphological features are based on a
TIN structure, no biased directions occur.

[61] 7. DEST has the ability to also detect shallow incised
valleys on very gentle slopes and weak ridges (Figures 11
and 12).

[62] 8. DEST has the capability to work with a large
number of data. For example, for the Sicily region, southern
Italy, 25,708 km?, a total number of 9.7 million input points
have been used by DEST to reconstruct the TIN; 8.5 million
points were added along the principal skeletons and 35
million triangles created by DEST.
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[63] 9. DEST has been extensively tested on many
million of points without problems (see the above-men-
tioned example of Sicily, for example).

[64] 10. Computational times are very short, one third of
TOPOGRID in the case of the 10 x 10 km test area
mentioned in the text (with a 10 m grid step). The time
doubles with respect to an ordinary DT/CDT.

Appendix A: Skeleton Reconstruction by DEST

[65] The medial axis of a set of distinct points of the plane
(number >2) is the boundary of the Voronoi diagram of all
the points so that the medial axis is a generalization of the
Voronoi diagram. Some useful properties of medial axes are
as follows: (1) the medial axis of a set of linear segments
consists only of straight lines and parabolic arcs; (2) the
skeleton of a convex polygon consists only of linear seg-
ments; (3) the skeleton of a simply connected region (i.e.,
without holes) is a tree (in the graphical theoretical sense);
(4) if Q is a point of the boundary B of a plane set R, where
the curvature of B has an isolated maximum, then there
exists a branch of the skeleton of R terminating at O; (5) the
medial axis of a straight line » and a point P not belonging to
r, is the parabola with directrix » and focus in P; (6) the
medial axis of two incident straight lines is given by the two
bisecting lines; and (7) the medial axis of a circumference is
a single point: its center.

[66] Let us consider the generic flat region created by a
DT, for example, where an isohypse presents a high
curvature. Locally, this isohypse is approximated by N,
contiguous segments connecting N, points. This flat
region is constituted by a set of flat triangles with vertices
in N,. The computation of the skeleton of this region is
essentially a problem of determining in the plane the
skeleton of the set S (V,, N;), constituted of N, segments
and N, points. Let T be the set given by the union of all
the bisectors of all the pairs of straight lines on which the
N, segments lie; let 7, be the set given by the union of all
the axes of all the segments with end points in the N,
points; let 75 be the set given by the union of all the
parabolas that can be constructed taking as focuses and as
directrices, the N, points and the N, straight lines on
which the N, segments lie, respectively. Finally, let T be
the union of T, T,, and T5. It can be demonstrated that
the medial axis of the set S is a subset of the set 7 and is
therefore made up of linear elements and tracts of
parabolas (Figure Ala).

[67] From a geometrical point of view we propose the
following technique to build the skeleton. Let us consider
the internal sides ¢, of the triangles constituting the flat
region (k = 1, Ny Ny = number of triangle sides not
belonging to boundary B). Since the skeleton Sk of the
region S consists of tracts of bisectors, axes, and parabolas,
we compute the intersections of the axes, bisectors, and
parabolas of the set 7 with all the internal triangle sides /.
For each side 7, of a triangle of S, there is therefore a set [,
that consists of these intersection points. However, for each
set I;, one and only one of these points belongs to the
skeleton of S. This point can be easily identified since it is at
maximum distance from all the boundary segments of
region S (Figure A1b). Sk; indicates the set of these points
(one for each triangle side ¢;) belonging to the skeleton of
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Figure Al. (a) Points P, P,, P;, P4, Ps are the nodes of a digitized contour line (segments S;, S,
S3, S4, S5). The Delaunay triangles are PP,Ps, P,P,Ps, and P,P;P4. The skeleton of the region is
the polyline PKK,K3K,P3, where PK; is the bisector of the angle with sides §; and Sy, KK, is
the bisector of the angle with sides S; and S5, K,K3 is the arc of parabola with focus in P, and
directrix Ss, and so on. (b) The intersections (set /;) of the segment P,Ps (¢;) with the set T are
shown as bold dots. In the set /;, one and only one point belongs to the skeleton (point Sk;). This
point can be easy identified since it has a maximum distance from all the boundary segments of the
region. The digital approximation (dotted line in Figure Alb) of the real skeleton (continuous line) is
obtained by connecting all the points Sk, (in the Figure Alb, points Sk; and Sk;). (c¢) To improve
the digitized approximation of the skeleton, new internal triangle sides ¢; can be added so that, for
example, the segment Sk;Sk, is improved to a polyline.
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Sk. By joining the points Sk; of contiguous triangles, we
can reconstruct a digital approximation of the skeleton of
the region S (Figure Alb). This approximation has been
referred to in this paper as the inferred breakline (IB)
(Figure Alb). To obtain a better approximation of the
digitalized skeleton to the real one, the number of Sk,
points can be arbitrarily increased, adding additional inter-
nal triangles and sides ¢, (Figure Alc).

[68] Calculation of the medial axis is subject to prob-
lems of noise when using digital contour lines since the
shape and length of the skeleton strictly depends on the
approximation with which the original line is digitized.
Furthermore, the greater the accuracy of the digitization
(high number of contour points, i.c., shorter segments),
the greater the “noise.” For example, the skeleton of an
ellipse-shaped contour line joins the two points of max-
imum curvature (Figure A2a). As shown in Figure A2b,
the digital approximation of the contour increases the
number of segments of the skeleton, and this number
further increases with an improvement in the digital
approximation of the ellipse (Figure A2c). In order to
obtain the significant tract of the medial axis only, we
have to identify the extreme points of the principal 1B
(departure-arrival point (DAP) of the IB). These coincide
with points of local maximum curvature of the contour
line and can be easily identified, as shown in Figures A3a
and A3b. The DAP is the triangle vertex with sides
belonging to the same contour line (in this case, all the
triangle vertices are consecutive points on the same
contour line: dark gray triangles in Figures A3a and
A3Db). In order to select the original skeleton only and
ignore the noise introduced by digitization, we need to
consider only the branches of the medial axes coming
from triangles with consecutive vertices on the same
contour line (DAP). The main skeleton selected in this
way is known as the “principal skeleton” (PS). PS is a

subset of the digital skeleton and approximates the
skeleton of the original continuous contour line.

Appendix B: Principal Skeleton by DEST

[69] The computation of the principal skeleton starts from
the DAP of the DGTs. To reduce computational time, a left
branch (LB) and right branch (RB) are identified, starting
from DAP, along the contour, until (1) the vertices of a LGT
(the set of boundary segments QAE and QBF, respectively,
in Figure 5) or (2) a not horizontal triangle is encountered
(i.e., the green triangle FEQ; of Figure 6, where points £
and F belong to a contour line, while point Q3 belongs to
another one). The IB connects a set of points Sk; on the
internal sides of the flat triangles of region R. As shown in
Figure 5, it is simple to verify that for each internal side 4B,

a)

Figure A2. (a) Skeleton of an ellipse is the dashed
segment joining the points of maximum curvature. (b—c) If
the ellipse is approximated by a set of segments (digitalized
contour), new branches add to the medial axis (dashed
segments). Their number increases as the number of
segments approximating the contour increases.
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Figure A3. In order to obtain the medial axis, the extreme
points of the principal IB have to be identified (departure-
arrival points (DAP) of the IB: points V; and V5). They
coincide with points of local maximum curvature of the
contour line and can be easily identified since they are
the vertices of those triangles with two sides belonging to
the same contour line (dark gray triangles).

the point Sk, of the skeleton belongs to the set 7,5 of all
the intersections of the segment AB with a subset 7y of T.
While T takes account of all the possible unions, Tgp is
made up of elements belonging to opposite branches (for
example, bisectors of angles with sides lying on two
boundary segments of LB and RB, respectively). From a
computational point of view the skeletal point Sk,z of the
segment AB is simply evaluated as the point of the set 7,5 at
equal distance from the two branches LB and RB.
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Ny number of internal sides of the triangles of
R.

N, number of boundary segments of R.

N, number of end points of boundary seg-
ments of R.

P point of R.

PM  distance of point P from point M.

PS principal skeleton.

Ou Opy Oc... points of B with a maximum local
curvature, and also the vertex of two
contiguous sides of triangles along the
contour line.

r straight line.

R flat region made up of triangles with
vertices on the same contour line.

RB boundary segments of B, counterclock-
wise following a DAP.

S union of the N, segments and N,, points.

Sk skeleton of S.

Sk, point of the set /; belonging to the skeleton
of S (it is the point of maximum distance
from all the N, segments of B).

Sk,p point of the segment 4B belonging to the
skeleton of S.

T, union of all the bisectors of all the pairs of
straight lines on which the N, segments
lie.

T> union of all the axes of all the N,
segments.

T5 union of all the parabolas with foci in the
N, points and directrices on the Nj
segments.

T T\UTLUT;.

Tsp subset of T obtained by considering only
elements belonging to the LB and RB
respectively (for example, the bisector of
the angle formed by two straight lines one
lying on a boundary segment of the LB,
and another on a segment of the RB).

T triangle of R with vertices at the same
quote.
Xp, Vp» 2, coordinates of point P.
region of the plane.
WHT triangle simply crossed by the IB; one side

of the triangle lies on the contour line B.

Notation
AB internal side of a triangle of R (the side
does not belong to the contour line B).
B boundary of R (also track of a contour line
bordering a flat region).

CDT constrained Delaunay triangulation (some
segments are forced to be sides of
triangles).

DAP points of maximum curvature of B; these
are also the end points on B of the IB.

DGT triangle with two sides on the contour line
B; the common vertex of the two sides is a
DAP.

DT Delaunay triangulation.
IB inferred breakline (the PS of B).
I, set of intersection points of 7 with segment
Uy
I,z set of intersection points of Tpg with

gk(k = 13 Nét)
LB

LGT

M
N

segment AB.

internal sides of the triangles of R.
boundary segments of B, clockwise fol-
lowing a DAP.

triangle containing the intersection of
three branches of the PS; no side of the
triangle belongs to the contour line B.
nearest point of B to P.

natural numbers 0, 1, 2, 3....
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